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Abstract
Quantum mechanical tunneling between localized sites will dominate carrier transport
in disordered solids, at sufficiently low temperatures, predicated by the localized state
concentration and energy distribution. We previously advanced a simple procedure for
interpreting carrier mobility data, for an energy-independent density of states (DOS). Here,
we show that it can easily be extended to interpret electrical conductivity data, for both
energy-independent and energy-dependent DOS distributions. We also show that the concept of
transport energy is of considerable value in understanding the factors that underlie the
experimental behavior. Furthermore, the new procedure yields credible and entirely
self-consistent results when applied to published conductivity data. Finally, we contrast its
success with the major inconsistencies that arise when results obtained using the
Mott ‘T −1/4’ model are examined in more than superficial detail.

1. Introduction

In disordered semiconductors, at sufficiently low temperatures,
charge carrier transport becomes dominated by quantum
mechanical tunneling (‘hopping’) between defect states
relatively close to the Fermi level. It is then typically found that
the activation energy of the electrical conductivity decreases
progressively as the temperature falls.

To examine this situation, we have previously [1]
employed a very large computer-generated random array of
sites to study the carrier hopping mobility within it, using
Monte Carlo simulation, for the case of an energy-independent
density of localized states (DOS). We then employed a new
procedure to analyze the resulting data, and obtained extremely
good agreement with the simulation DOS. Here, we extend

3 Author to whom any correspondence should be addressed.

the procedure to allow its use with dc electrical conductivity
data. We then show, initially using simulation data, that it
is very easily implemented, and provides good agreement in
respect of both the magnitude and the energy dependence of the
DOS. Next, we apply it to data from several prior experimental
studies. We show that it eliminates the major discrepancies
that emerge when the Mott ‘T −1/4’ model [2] is applied. We
also show that the concept of a controlling ‘transport energy’,
located appropriately within the localized state distribution, is
of considerable value in understanding the factors that actually
determine the low-temperature hopping behavior.

2. The Monte Carlo simulation procedure

At temperature T , the rate of carrier jumps from a site of
energy E to one at E ′, over a distance r , is taken to be described

0953-8984/08/285210+08$30.00 © 2008 IOP Publishing Ltd Printed in the UK1

http://dx.doi.org/10.1088/0953-8984/20/28/285210
mailto:c.main@dundee.ac.uk
http://stacks.iop.org/JPhysCM/20/285210


J. Phys.: Condens. Matter 20 (2008) 285210 J M Marshall and C Main

via the Miller–Abrahams [3] expression:

ν j = ν0 exp(−2r/r0)

⎧
⎪⎨

⎪⎩

exp(−(E ′ − E)/kT ),

(E ′ > E)

1, (E ′ � E).

(1)

Here, ν0 is the ‘attempt to hop’ frequency (taken as
1012 Hz throughout this study), r0 is the localization range
for the sites, and k is the Boltzmann constant. At finite
applied fields, E ′ − E includes any additional field-induced
potential difference between the sites. At low fields, as in
our present simulations, the resulting carrier mobility becomes
field independent.

As before [1], an array of 960 000 hopping sites, randomly
distributed in a volume of 96 × 100 × 100 units was used in
the simulations. However, the present studies employed both
an energy-independent and an exponentially energy-dependent
DOS. The former featured a site density of N(E) = N(EF) =
1020 cm−3 eV−1, with the sites having randomly assigned
energies in the range E = EF ± 0.25 eV where EF is the
Fermi energy. This range was chosen to be well in excess
of kT at all temperatures investigated, while still avoiding
unnecessary dilution of the array by including sites irrelevant
to the transport process. The latter had the form N(E) =
N(EF) exp((E − EF)/kT0), with energies measured upwards
relative to EF and with N(EF) = 1020 cm−3 eV−1 and T0 =
500 K. The site energy range was 0.2 � (E − EF) � −0.1 eV.

For each site, its Fermi–Dirac occupation probability,
f (E), at the temperature under consideration was employed, in
conjunction with a random number, in order to select whether
or not it was occupied. Sites thus defined as occupied were
taken to be unavailable for initial excess carrier generation or
for subsequent hopping transitions. For the unoccupied sites,
the 16 nearest unoccupied neighbors (i.e. those with the highest
values of ν j , using r0 = 4 × 10−8 cm and an applied electric
field of F = 104 V cm−1) were identified. We separately
confirmed that increasing F by an order of magnitude did not
alter the resulting calculated mobilities. Periodic boundary
conditions were used in the selection, in all three hopping
dimensions.

Individual carriers were then initially generated on
randomly-selected unoccupied sites, and allowed sufficient
simulation time to equilibrate with and to drift within the
array. Their resulting net displacements in the field direction
were then combined to determine the average drift mobility, μ.
The individual steps involved in the Monte Carlo procedure
for such simulations are described in more detail, in [4]
for example. Finally, the resulting mobility value was
used in conjunction with the charge carrier concentration,
n = ∫

N(E) f (E)dE (easily calculated for the known N(E)

distributions), to obtain the electrical conductivity in the form
σ = neμ. Before presenting the results in section 4, we will
first describe the analytical procedure employed to interpret
them.

3. Analytical procedure for the interpretation of
electrical conductivity data

From experimental studies, the available parameters are the
magnitude, σ , and activation energy, Eσ , of the conductivity

at any given temperature T . However, the latter involves both
the activation energy of the mobility, Eμ, and the temperature
dependence of the carrier concentration, n(T ). Therefore, the
effect of the latter component must be addressed. Moreover,
almost all equilibrated charge carriers can be expected to
occupy states closer to the Fermi level than any measured
value of Eσ . Thus, only limited information regarding the
concentration and energy distribution of these deeper states can
be inferred directly from the conductivity data, and some form
of extrapolation is required.

However, all that we initially require here is the
temperature dependence of the carrier concentration, rather
than its exact magnitude. Now consider two particular cases.

(a) A constant DOS (N(Eμ)) between the energy Eμ and
a similar energy below the Fermi level: the integrated
carrier concentration over these states, via Fermi–Dirac
occupation statistics, is then n(T ) = N(Eμ)kT ln(2) and
thus varies linearly with temperature. Hence, a modified
Arrhenius plot of ln(σ/T ) versus 1/T can be employed to
obtain Eμ.

(b) A DOS that decays exponentially from Eμ to EF and
below, with a characteristic temperature T0: n(T ) is then
proportional to ((1/kT ) − (1/kT0))

−1. Since we may
expect (and will demonstrate for all data below) T0 to
be significantly greater than T in the low-temperature
hopping regime, the procedure in (a) can again be
employed.

Other forms of N(E) are obviously possible, although
perhaps less physically probable. However, having confirmed
by inspection that other types of sufficiently weak temperature
dependence yield extremely small changes in the calculated
parameters, we consider it justified and sufficient to adopt the
procedure in (a), hereafter.

Having determined Eμ as above, we now envisage
(see section 5 for further discussion) that the rate-limiting
transport process for a carrier normally occupying a thermally
equilibrated deeper site close to the EF must involve traversing
a typical distance, rc, and also gaining the necessary energy to
access a site close to Eμ.

To identify an appropriate value, rc can be adjusted until
the calculated conductivity is equal to the experimental one.
The computation steps for each temperature then comprise:

(i) Calculation of Eμ, as above.
(ii) Choice of an initial seeding value of rc. Here, one can use

rc = r0, since the final iterated values of rc are obviously
expected to be greater than or equal to this.

(iii) Calculation of the resulting drift mobility, for carriers
moving via states close to Eμ, using the conventional ex-
pression μ = (e ν0 r 2

c /6kT ) exp(−2rc/r0) exp(−Eμ/kT ).
(iv) Calculation of the volume of a sphere of radius rc, as

V = 4πr 3
c /3.

(v) Assumption that this sphere must contain just one site at
an energy close to Eμ (otherwise, a smaller or larger value
of rc would automatically arise). Thus, calculation of the
DOS at this energy, as N(Eμ) ∼ 1/(V Eμ).

(vi) Estimation of the carrier density as n ∼ N(Eμ)kT (but
see the comment below).
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Figure 1. Temperature dependence of the dc electrical conductivity for the energy-independent simulation (a) (filled circles—data points;
open circles—fitted σ values) and the DOS calculated using the new procedure (b). The solid line in (a) is a fit as described in the text. That in
(b) is an exponential relationship, with a characteristic temperature of T0 = 2500 K, while the dashed line indicates the true DOS. The inset in
(a) shows the temperature dependence of Eμ relative to kT . That in (b) is the temperature dependence of rc, with the dashed line indicating
the value of r0.

(vii) Calculation of the resulting electrical conductivity as
σ = neμ.

(viii) Iterative adjustment of rc, until the calculated conductiv-
ity equals the measured one within a specified range (one
part in 103 hereafter).

Note that step (vi) implicitly assumes that the DOS
calculated in step (v) remains constant from the energy Eμ

down to and below the Fermi level. Further refinement could
be made here (e.g. an initial estimate of the energy variation
of the DOS, extrapolated to EF, could be used in step (vi),
in additional iterations). However, here we simply adopt this
assumption.

The above steps could be collected into the solution of the
equation σ = ar−1

c exp(−b rc). However, we have found that
this can give rise to instabilities and/or a lack of convergence.
Thus, we below confine ourselves to the use of the above
step-wise iterative procedure. This can readily be executed in
(e.g.) a very simple computer program, to give extremely rapid
convergence in terms of rc. An example computer code can be
obtained from the corresponding author, upon request.

4. The simulation data and their interpretation using
the analytical procedure

Figure 1(a) shows the temperature dependence of the
simulation and calculated dc electrical conductivities, for the
energy-independent DOS, and figure 1(b) shows the resulting
calculated DOS and rc parameters. The former includes a fit
to a ln(σ ) = A − BT −1/n relationship, with the resulting
value of n being 8.13. This only significance of this, in terms
of the present study, is that it demonstrates that the value of
n = 4 expected from the Mott ‘T −1/4’ model is not obtained.
Note, however, that the fitting accuracy is primarily determined
by the values of Eμ calculated using adjacent conductivity
data points. Thus, although some form of smoothing or curve
fitting could be desirable in practice, we have not employed it
here.

From figure 1(b), the DOS values calculated via the new
procedure are within a factor of 2 of the correct ones (Fermi–
Dirac occupation statistics have a negligible effect over this

temperature range, as discussed below). They do, however,
deviate slightly from the true energy distribution, in yielding a
very slowly rising DOS. This is in no respect a consequence of
the inclusion of the full Fermi–Dirac statistics in the present
study. Essentially identical results were obtained in [1], in
which a zero-temperature approximation was employed to
specify the number of unoccupied states close to EF. This is
understandable, since the inset in figure 1(a) shows the energies
to which the DOS values correspond to be at least 6kT above
EF in all cases. These relatively minor discrepancies must thus
involve residual deficiencies in the analytical procedure itself.
However, we consider that an accuracy of a factor of two or
better is highly acceptable, in comparison to many previous
attempts to analyze such data (see sections 6 and 7 below, for
some examples!).

Figure 2(a) displays the simulated conductivity data for
the exponential DOS, and figure 2(b) the calculated DOS
values. These are slightly less that the true ones, but again
only by a small factor. They yield a value of T0 = 416 ±
5 K, compared to the actual value of 500 K (i.e. to a rather
steeper gradient of the DOS versus energy). Both observations
are consistent with those for figures 1(a) and (b). Indeed,
assuming an identical influence of the analytical procedure
upon the energy dependence of the calculated DOS, T ′

0 would
be 1/(416−1 − 2500−1) = 499 ± 5 K. Again, the activation
energies are much larger than kT , so that Fermi–Dirac
occupation statistics do not reduce the density of available
hopping sites close to these energies.

It is important to note here that:

(i) The simulation units were normalized to a mean inter-
site distance of unity. Thus, if we had selected a
different value of N(EF), then (with the other simulation
parameters remaining the same) r0 would have changed
correspondingly. This would leave the subsequent
comparison between the calculated and true values of
N(EF) totally unaffected.

(ii) In all of the above computations, the values of rc remained
appreciably higher than r0 throughout the investigated
temperature ranges. Should this criterion cease to be
satisfied, the premises of our analytical procedure would
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Figure 2. Temperature dependence of the dc electrical conductivity for the energy-dependent simulation (a) (filled circles—data points; open
circles—fitted σ values) and the DOS calculated using the new procedure (b). The solid line in (a) is a guide to the eye. That in (b) is a fit of
the data to an exponential DOS, with a characteristic temperature of T0 = 416 K, while the dashed line indicates the true DOS. The inset in (a)
shows the temperature dependence of Eμ, relative to kT . That in (b) shows the temperature dependence of rc, with the dashed line indicating
the value of r0.

Figure 3. Normalized depiction of the probability of a state being
unoccupied, 1 − f (E) (solid line), the transport contribution (dashed
line) and the equilibrated carrier population (dotted line) for the
exponential DOS, at 65 K. The inset shows the calculated transport
energies (solid line) with the mobility activation energies (filled
circles), at various temperatures.

obviously become invalid. In section 6, we will show
that this causes an abrupt rise in the calculated N(E),
to physically unrealistic values. We view this as an
indication that carrier transport is departing from the
low-temperature ‘variable range’ hopping regime, and
becoming dominated by another process such as trap-
limited transport via intermittent excitation to and motion
within extended states.

5. Relevance of the transport energy concept

For the above data (and for the experimental results below)
the conductivity activation energies fall progressively with
decreasing temperature. This cannot be due solely to an
increased hopping distance, since rc increases only slowly.
Moreover, as in figures 1(a) and 2(a) (and below), the
mobility activation energies are significantly larger than kT
and increase relative to it as the temperature falls. We now
consider what does determine their values.

In this context, it is valuable to introduce the concept of a
‘transport energy’, Etran. There are various ways in which this

can be defined, e.g. [5–8]. However, for our present largely
illustrative purposes we do not require a precise quantitative
definition. We thus adopt a simplified definition of Etran as
that at which the local contribution to the dc conductivity (in
terms of the local DOS (N(E)dE), the occupation probability
( f (E)) and the mobility for transitions to all unoccupied iso-
energetic or deeper-lying sites) has a peak value. Despite
this simplification, we will demonstrate that the resulting
values are in reasonable qualitative agreement with the actual
mobility activation energies, as obtained from the simulation
data.

Figure 3 shows such a calculation for the simulated
exponential DOS, at 65 K. The inset compares the
calculated transport energies with the Eμ values. Given the
simplistic definition of Etran, we would not expect an exact
correspondence. However, the results strongly support an
interpretation in which the low-T transport can be viewed
in terms of such transport energy—i.e. equilibrated carriers,
mostly occupying states within ∼kT of the Fermi level, must
access sites close to Etran in order to continue their macroscopic
motion.

This concept has some similarities to that of trap-limited
band transport, (e.g. [9]), but with two very important
differences. Firstly, the position of Etran is now temperature-
dependent, whereas for trap-limited band transport it is fixed
close to the mobility edge. Secondly, the mobility of
carriers close to Etran is now much more strongly temperature-
dependent. As the temperature falls and Etran moves closer
to EF, the total number of iso-energetic or deeper-lying states
falls, increasing their average separation and resulting in a
reduced mobility.

Note that both the Etran and the Eμ value indicate states
sufficiently far above EF that the influence of Fermi–Dirac
statistics is minimal. This is also the case for the energy-
independent DOS, but is even more so here, where the rising
DOS moves Etran to higher energies. The influence of Fermi–
Dirac statistics on the total concentration of empty states
below Etran (and thus the downwards hopping mobility) is also
trivial.

4
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Figure 4. Experimental data (a) (filled circles—data points; open circles—fitted σ values) and the DOS calculated using the new procedure
(b), for specimens of r.f. sputtered amorphous silicon [10], as deposited at 300 K and after annealing for 24 h at 383, 523, 653 and 723 K (1 to
5, respectively). The solid lines in (b) employ the fitted values of N(EF) and T0.

Figure 5. Temperature dependence of the electrical conductivity, for
an evaporated specimen of amorphous Ge [11], after two stages of
annealing, at 443 (1b) and 583 K (1e). The filled symbols are the
experimental data points and the open ones are the fitted values. The
lines are fits to the low T data, as explained in the text.

6. Application of the new model to data for
amorphous Group IV semiconductors

A meticulously conducted experimental study to which the
new analytical procedure can be applied is that of Paul and
Mitra [10] for specimens of r.f. sputtered amorphous Group
IV (Si, Ge and Ge:Si alloy) films, subjected to various post-
deposition annealing treatments. These data are of particular
value here, since such early specimens tended to contain much
higher densities of defect states close to EF than have been
achieved using subsequent fabrication techniques (and thus
featured a much higher contribution due to hopping within such
states).

Figure 4(a) shows the published data for a-Si, transferred
into an Arrhenius format, for consistency with our previous
figures, and figure 4(b) shows the densities of states calculated
using our new procedure. Here and below, the assumed
underlying parameters were r0 = 10−7 cm and ν0 = 1012 Hz.
Note that physically unreasonable N(EF) values between
1025 and 1028 cm−3 eV−1 were calculated for their various
specimens by the original investigators, using a modified
version of the Mott model. However, striking anomalies still

emerge if the basic T −1/4 model, as in [2], is employed. We
will return to these in section 7.

Analyses for the a-Ge and a-Ge:Si specimens yielded
qualitatively similar results. All appear consistent with
exponential energy variations of the DOS, as shown below.

Table 1 summarizes the results, in terms of the calculated
values of N(EF) and the fitted exponential DOS characteristic
temperature, T0. Our present simulation studies suggested that
a correction of the form T ′

0 ∼ 1/(T −1
0 − 2500−1) might be

applicable to the T0 values. This would reduce the energy
gradient of the DOS, while having only a small influence on
the calculated values of N(EF). The resulting values of T ′

0, are
therefore also included.

In all cases, higher temperature annealing progressively
reduces N(EF), as seems reasonable. It also yields increased
values of T0 or T ′

0 (i.e. a reduction in the energy dependence of
the DOS), but with differences in detail between the materials.

It is also instructive to compare the above results for a-
Ge with those obtained using data presented by Beyer and
Stuke [11]. Here, the deposition process was described as
one of ‘evaporation on a cold substrate with high evaporation
rate’, but no further details were provided. A single specimen
was studied, after successive annealing steps at progressively
higher temperatures, for relatively short times (15 min)
compared to those in the above study.

Figure 5 shows the temperature dependences of the
conductivity, after two of the annealing stages. The fitted
lines of the lower temperature data to third order polynomial
relationships again have no special physical significance.
However, they do assist in indicating the temperatures at which
a transition in the transport mechanism seems to occur.

Figure 6 shows the resulting values of the densities of
states. In both cases, the low-temperature data correspond
well to exponential energy relationships, with N(EF) = 1.4 ×
1019 cm−3 eV−1 and T0 = 320 K for annealing stage 1b,
and N(EF) = 6.3 × 1018 cm−3 eV−1 and T0 = 630 K for
stage 1e. If the T0 values are corrected as above, they become
approximately 370 and 840 K, respectively. Note that although
the authors claimed T −1/4 relationships in the low-temperature
region, they did not perform calculations of N(EF) etc. We
have done so, and will again indicate the results in section 7.

5
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Figure 6. Calculated DOS for the a-Ge specimen in figure 5, after (a) annealing stage 1b and (b) stage 1e. The solid lines in the main figures
are fits to an exponential DOS and the dashed lines are guides to the eye. The insets show the corresponding values of rc. Their dashed lines
indicate the value of r0 assumed in the calculations.

Table 1. Values of N(EF) (cm−3 eV−1) and T0, for various specimen annealing temperatures and times, as obtained by the analysis of data
taken from [10]. The T ′

0 values indicate the effect of applying empirical corrections to T0, as described in the text.

a-Si 300 K 383 K 523 K 653 K 723 K
24 h 24 h 24 h 24 h

N(EF) 2.5 × 1019 1.9 × 1019 1.3 × 1019 7.3 × 1018 6.4 × 1018

T0 (K) 580 590 795 1220 1370
T ′

0 (K) 760 770 1160 2380 3030

a-Ge 300 K 373 K 373 K 473 K 523 K 598 K
1 h 18 h 24 h 24 h 24 h

N(EF) 7.5 × 1019 4.9 × 1019 4.0 × 1019 2.3 × 1019 1.9 × 1019 1.5 × 1019

T0 (K) 320 360 370 450 640 640
T ′

0 (K) 370 420 430 550 860 860

a-Ge:Si 300 K 373 K 373 K 473 K 573 K 673 K
2 h 24 h 24 h 24 h 24 h

N(EF) 3.3 × 1019 2.6 × 1019 2.0 × 1019 1.6 × 1019 1.2 × 1019 7.8 × 1018

T0 (K) 410 600 610 600 630 750
T ′

0 (K) 490 790 810 790 840 1070

Given the differences in the annealing conditions, the
values of N(EF) and T0 are in reasonable agreement with
those for the a-Ge specimens in table 1. However, an
additional important aspect of figure 6 is the transition between
the low-temperature hopping regime, in which our new
analytical procedure is applicable, and the higher temperature
regime, in which it is not. The calculated values of the
parameter rc in the insets decline (as would be expected) with
increasing temperature. However, abrupt falls to physically
unreasonable values less than r0 occur at about 270 and
200 K for cases 1b and 1e, respectively. These temperatures
correspond reasonably well to those at which the data in
figure 5 deviate from the fitted low-temperature exponential
DOS relationships. Although it is not so directly obvious,
they also correspond to the activation energy values in
figure 6 at which the calculated densities of states deviate
from the low-temperature exponential form, and rapidly
assume unreasonably high values. All of these features
are consistent with a transition to a different conduction
mechanism at higher temperatures, such as trap-limited band
transport.

7. Evaluation of Mott’s ‘T −1/4’ procedure, in
relation to experimental studies

We previously mentioned that Mott’s ‘T −1/4’ analytical
procedure has often yielded totally unreasonable calculated
values of N(EF). Moreover, as illustrated below, even where
the calculated values do not appear unreasonable at first sight,
major inconsistencies emerge upon more detailed examination.
Despite this, the Mott ‘T −1/4’ procedure continues to
be employed in an uncritical manner in various studies.
The current interest in microcrystalline and nanocrystalline
materials has rekindled interest in hopping conductivity, and
the model is again being applied uncritically in such cases.

The root cause of the anomalies is that the original version
of the Mott model [12] used a parameter, rmax, to represent
two very different quantities—the dominant hopping distance
and the radius of a sphere within which such hopping occurs.
Subsequently [2], a nominal attempt was made to correct
this by defining rmax as

∫ R
0 r 3r dr/

∫ R
0 r 2 dr = 75% of the

sphere radius, R. This, however, totally neglected the effect of
tunneling over varying distances within the sphere. The correct
expression should be rmax = ∫ R

0 r 3 exp(−2r/r0) dr/
∫ R

0 r 2 dr .

6
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Figure 7. Experimental data (a) and the DOS calculated using our new procedure (b), for sputtered microcrystalline silicon [13], deposited at
various r.f. powers. The inset in (a) is an Arrhenius plot of the conductivity, for the specimen deposited at 50 W (the filled circles are the
experimental data and the open ones the fitted values). The solid lines in (b) are fits of the lower energy data to exponential relationships, as
described in the text.

This only approaches the 75% value for R/r0 � 1, which
is clearly incompatible with ‘variable range hopping’. For
R/r0 > 3, rmax falls to less than 1% of the sphere radius!

Further critical inconsistencies arise when the underlying
implications of the model are considered in detail. We
will illustrate these via a recent study of conduction in
microcrystalline silicon films [13]. In doing so, we do not
suggest that ‘variable range’ (i.e. the dominance of transitions
beyond nearest neighbor sites) hopping does not occur. Many
detailed prior (e.g. percolation-based) studies have predicted
this, as do the analyses of our present simulation data. Rather,
we wish to emphasize that the attractive simplicity of the Mott
model still results in its continued and uncritical use, despite
the underlying inconsistencies that would emerge via a proper
consideration of the implications.

Of course, it is not obvious that either the Mott model
or our present one is appropriate to microcrystalline materials.
Here hopping sites will quite probably be concentrated within
the grain boundaries around the crystallites, rather than
randomly distributed. Therefore, any calculated DOS should
be regarded as an ‘effective’ density of states, as opposed
to a true one. Subject to this, it remains worthwhile to
demonstrate just how Mott’s ‘T −1/4’ interpretation yields
underlying inconsistencies of such major proportions, in both
this and the various other cases above.

Figure 7(a) shows data for sputtered microcrystalline
silicon deposited at various r.f. powers. The revised Mott
model [2], including the expected temperature dependence of
the pre-exponential term, predicts a gradient, for a ln(σ T 1/2)

versus T −1/4 plot, of B = 1.66/(r 3
0 k N(EF))

1/4. Taking r0

as 10−7 cm as before, the resulting values for N(EF) are
∼3 × 1018, 4 × 1017, 1.5 × 1017 and 5 × 1016 cm−3 eV−1 for
the 15–100 W specimens, respectively. These differ by about a
factor of two from those obtained by the original authors, who
employed simplified ln(σ ) versus T −1/4 plots. For our present
purposes, we will adopt the values stated herein.

The ‘T −1/4’ values of N(EF) are about an order of
magnitude lower than those obtained by the fits in figure 7(b).
In itself, this might not be regarded as too dramatic a
discrepancy. However, serious problems emerge when we
explore the implications in more detail. Below, we illustrate

these using the data for the 50W specimen, as shown in the
inset in figure 7(a).

Discounting the inappropriate correction to it, the
Mott model [2] predicts a hopping distance of rmax =
31/4(2π N(EF)kT /r0)

1/4rmax N(EF)kT/r0. At 120 K, this
gives a value of 2.4 ×10−6 cm. Note that if a different value of
r0 had been chosen, this would affect N(EF) in such a way
that rmax/r0 = 24 would be unchanged. This also applies
to the hopping activation energy W = 3r 3

max/(4π N(EF)) =
0.123 eV at 120 K.

Now consider a conventional expression for the resulting
carrier mobility:

μ = (eνr 2
max/6kT ) exp(−2rmax/r0) exp(−W/kT ) (2)

(as for our procedure in section 3, but with rmax replacing rc).
With ν as 1012 Hz, the pre-exponential term is

∼100 cm2 V−1 s−1 at 120 K. However, this must be multiplied
by a factor of ∼10−26 comprising the combined influence of
the two exponential terms, giving an overall mobility of about
10−24 cm2 V−1 s−1. With a carrier density n ∼ N(EF)kT ∼
1.5 × 1015 cm−3, this yields an electrical conductivity of
σ = neμ ∼ 2.5 × 10−28 �−1 cm−1. From figure 7(a)
(inset), the true conductivity at 120 K is ∼10−8 �−1 cm−1,
giving a discrepancy of almost twenty orders of magnitude.
Such inconsistencies do not, and indeed cannot, arise for
our new procedure. This employs the measured conductivity
and its activation energy, to directly identify a value of the
dominant hopping distance that must automatically then yield
full agreement with the measured data (as shown in various
figures).

Table 2 shows the results of applying Mott’s ‘T −1/4’
analytical procedure [2] to other data in this paper. It can again
be seen that although the N(EF) values are not unreasonable
at first sight, they lead to discrepancies in the resulting
conductivities of at least five orders of magnitude.

Figure 7(b) shows the results of applying our new
procedure to data extracted from figure 7(a). For consistency
with earlier figures, fits have been included for an exponential
energy variation of the DOS at the lowest energies. However,
there is obviously no guarantee that such an assumed functional
dependence is valid, and the data at the higher deposition

7



J. Phys.: Condens. Matter 20 (2008) 285210 J M Marshall and C Main

Table 2. Values of Mott’s ‘T −1/4’ parameter, B, plus the resulting values of N(EF) (cm−3 eV−1) and σcalc (�−1 cm−1), at the temperatures
indicated, for various data as presented above. σtrue is the true electrical conductivity at the temperature in question.

B N(EF) T σcalc σtrue

Energy-independent simulation 107 1.0 × 1019 80 4.5 × 10−21 6.5 × 10−14

Exponential DOS simulation 132 4.6 × 1018 80 1.1 × 10−25 3.9 × 10−10

Ref. [10], Specimen 1 69 3.9 × 1018 100 1.7 × 10−13 2.0 × 10−8

Ref. [10], Specimen 3 76 2.7 × 1018 100 8.8 × 10−15 8.5 × 10−10

Ref. [10], Specimen 5 91 1.3 × 1018 100 1.8 × 10−17 7.3 × 10−12

Ref. [11], Specimen 1b 99 9.2 × 1017 140 1.2 × 10−17 4.4 × 10−6

Ref. [11], Specimen 1e 119 4.4 × 1017 140 5.5 × 10−21 1.4 × 10−8

r.f. powers suggest that the values of N(EF) may well be
underestimated by such a fit, in this case. Data for lower
measurement temperatures would be required to explore this
possibility.

Finally, we note that the major inconsistencies underlying
Mott’s ‘T −1/4’ model were probably first identified over 35
years ago by Brodsky and Gambino [14], albeit using a rather
different approach to that employed here. Unfortunately, and
presumably because of the attractive apparent simplicity of the
model, they appear to have been largely, if not totally, ignored
in many subsequent experimental studies.

8. Further studies

Our new analytical procedure can reproduce the density of
localized states employed in simulation studies, within a factor
of two or better. It can also be applied in a simple manner
to experimental data, yielding reasonable and self-consistent
values for both the density and energy distribution of such
states close to the Fermi level. It does, however, yield a mildly
increased energy dependence of the calculated DOS for the
two simulation studies. It would be rewarding if this could
be eliminated by further refinement.

Finally, additional experimental measurements on un-
hydrogenated (i.e. highly disordered) amorphous Group IV
semiconductors, over the widest possible temperature range,
would be of considerable value in the further evaluation of the
new procedure. It is envisaged that these will be performed and
reported upon subsequently.

9. Conclusions

A new procedure for the interpretation of the electrical
conductivity associated with hopping at low temperatures in
disordered semiconductors has been advanced.

Its validity and effectiveness has been demonstrated using
data generated via Monte Carlo simulations of hopping within
a very large array of hopping sites.

It has also been applied to various published experimental
data, for which it yielded entirely credible and self-consistent
values of the density of states at the Fermi level, and of the
energy distribution of states above this. The results were also

fully consistent with the expected effects of different specimen
deposition conditions and of subsequent annealing.

In contrast, the Mott ‘T −1/4’ model yielded major
inconsistencies. Even when these were not directly evident
from the estimated N(EF) values, they became apparent when
the resulting associated parameters were used to compare the
predicted and experimental values of the electrical conductivity
etc.
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